红联Linux门户
Linux帮助

Linux内核的namespace机制分析

发布时间:2015-02-20 10:45:59来源:linux网站作者:frankzfz

1.Linux内核namespace机制

Linux Namespaces机制提供一种资源隔离方案。PID,IPC,Network等系统资源不再是全局性的,而是属于某个特定的Namespace。每个namespace下的资源对于其他namespace下的资源都是透明,不可见的。因此在操作系统层面上看,就会出现多个相同pid的进程。系统中可以同时存在两个进程号为0,1,2的进程,由于属于不同的namespace,所以它们之间并不冲突。而在用户层面上只能看到属于用户自己namespace下的资源,例如使用ps命令只能列出自己namespace下的进程。这样每个namespace看上去就像一个单独的Linux系统。


2 .Linux内核中namespace结构体

在Linux内核中提供了多个namespace,其中包括fs (mount), uts, network, sysvipc, 等。一个进程可以属于多个namesapce,既然namespace和进程相关,那么在task_struct结构体中就会包含和namespace相关联的变量。在task_struct 结构中有一个指向namespace结构体的指针nsproxy。

struct task_struct {

……..

/* namespaces */

struct nsproxy *nsproxy;

…….

}

再看一下nsproxy是如何定义的,在include/linux/nsproxy.h文件中,这里一共定义了5个各自的命名空间结构体,在该结构体中定义了5个指向各个类型namespace的指针,由于多个进程可以使用同一个namespace,所以nsproxy可以共享使用,count字段是该结构的引用计数。

/* 'count' is the number of tasks holding a reference.

 * The count for each namespace, then, will be the number

 * of nsproxies pointing to it, not the number of tasks.

 * The nsproxy is shared by tasks which share all namespaces.

 * As soon as a single namespace is cloned or unshared, the

 * nsproxy is copied

*/

struct nsproxy {

atomic_t count;

struct uts_namespace *uts_ns;

struct ipc_namespace *ipc_ns;

struct mnt_namespace *mnt_ns;

struct pid_namespace *pid_ns_for_children;

struct net*net_ns;

};

(1)UTS命名空间包含了运行内核的名称、版本、底层体系结构类型等信息。UTS是UNIX Timesharing System的简称。

(2)保存在struct ipc_namespace中的所有与进程间通信(IPC)有关的信息。

(3)已经装载的文件系统的视图,在struct mnt_namespace中给出。

(4)有关进程ID的信息,由struct pid_namespace提供。

(5)struct net_ns包含所有网络相关的命名空间参数。

系统中有一个默认的nsproxy,init_nsproxy,该结构在task初始化是也会被初始化。#define INIT_TASK(tsk)\

{

.nsproxy= &init_nsproxy,

}

其中init_nsproxy的定义为:

static struct kmem_cache *nsproxy_cachep;

struct nsproxy init_nsproxy = {

.count= ATOMIC_INIT(1),

.uts_ns= &init_uts_ns,

#if defined(CONFIG_POSIX_MQUEUE) || defined(CONFIG_SYSVIPC)

.ipc_ns= &init_ipc_ns,

#endif

.mnt_ns= NULL,

.pid_ns_for_children= &init_pid_ns,

#ifdef CONFIG_NET

.net_ns= &init_net,

#endif

};

对于.mnt_ns没有进行初始化,其余的namespace都进行了系统默认初始。


3. 使用clone创建自己的Namespace

如果要创建自己的命名空间,可以使用系统调用clone(),它在用户空间的原型为

int clone(int (*fn)(void *), void *child_stack, int flags, void *arg)

这里fn是函数指针,这个就是指向函数的指针,, child_stack是为子进程分配系统堆栈空间,flags就是标志用来描述你需要从父进程继承那些资源, arg就是传给子进程的参数也就是fn指向的函数参数。下面是flags可以取的值。这里只关心和namespace相关的参数。

CLONE_FS子进程与父进程共享相同的文件系统,包括root、当前目录、umask

CLONE_NEWNS当clone需要自己的命名空间时设置这个标志,不能同时设置CLONE_NEWS和CLONE_FS。

Clone()函数是在libc库中定义的一个封装函数,它负责建立新轻量级进程的堆栈并且调用对编程者隐藏了clone系统条用。实现clone()系统调用的sys_clone()服务例程并没有fn和arg参数。封装函数把fn指针存放在子进程堆栈的每个位置处,该位置就是该封装函数本身返回地址存放的位置。Arg指针正好存放在子进程堆栈中的fn的下面。当封装函数结束时,CPU从堆栈中取出返回地址,然后执行fn(arg)函数。

/* Prototype for the glibc wrapper function */

#include <sched.h>

int clone(int (*fn)(void *), void *child_stack,

int flags, void *arg, ...

/* pid_t *ptid, struct user_desc *tls, pid_t *ctid */ );

/* Prototype for the raw system call */

long clone(unsigned long flags, void *child_stack,

void *ptid, void *ctid,

struct pt_regs *regs);

我们在Linux内核中看到的实现函数,是经过libc库进行封装过的,在Linux内核中的fork.c文件中,有下面的定义,最终调用的都是do_fork()函数。

#ifdef __ARCH_WANT_SYS_CLONE

#ifdef CONFIG_CLONE_BACKWARDS

SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,

int __user *, parent_tidptr,

int, tls_val,

int __user *, child_tidptr)

#elif defined(CONFIG_CLONE_BACKWARDS2)

SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,

int __user *, parent_tidptr,

int __user *, child_tidptr,

int, tls_val)

#elif defined(CONFIG_CLONE_BACKWARDS3)

SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,

int, stack_size,

int __user *, parent_tidptr,

int __user *, child_tidptr,

int, tls_val)

#else

SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,

int __user *, parent_tidptr,

int __user *, child_tidptr,

int, tls_val)

#endif

{

return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);

}

#endif

3.1do_fork函数

在clone()函数中调用do_fork函数进行真正的处理,在do_fork函数中调用copy_process进程处理。

long do_fork(unsigned long clone_flags,

unsigned long stack_start,

unsigned long stack_size,

int __user *parent_tidptr,

int __user *child_tidptr)

{

struct task_struct *p;

int trace = 0;

long nr;

/*

* Determine whether and which event to report to ptracer.When

* called from kernel_thread or CLONE_UNTRACED is explicitly

* requested, no event is reported; otherwise, report if the event

* for the type of forking is enabled.

*/

if (!(clone_flags & CLONE_UNTRACED)) {

if (clone_flags & CLONE_VFORK)

trace = PTRACE_EVENT_VFORK;

else if ((clone_flags & CSIGNAL) != SIGCHLD)

trace = PTRACE_EVENT_CLONE;

else

trace = PTRACE_EVENT_FORK;

if (likely(!ptrace_event_enabled(current, trace)))

trace = 0;

}

p = copy_process(clone_flags, stack_start, stack_size,

child_tidptr, NULL, trace);

/*

* Do this prior waking up the new thread - the thread pointer

* might get invalid after that point, if the thread exits quickly.

*/

if (!IS_ERR(p)) {

struct completion vfork;

struct pid *pid;

trace_sched_process_fork(current, p);

pid = get_task_pid(p, PIDTYPE_PID);

nr = pid_vnr(pid);

if (clone_flags & CLONE_PARENT_SETTID)

put_user(nr, parent_tidptr);

if (clone_flags & CLONE_VFORK) {

p->vfork_done = &vfork;

init_completion(&vfork);

get_task_struct(p);

}

wake_up_new_task(p);

/* forking complete and child started to run, tell ptracer */

if (unlikely(trace))

ptrace_event_pid(trace, pid);

if (clone_flags & CLONE_VFORK) {

if (!wait_for_vfork_done(p, &vfork))

ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);

}

put_pid(pid);

} else {

nr = PTR_ERR(p);

}

return nr;

}

3.2copy_process函数

在copy_process函数中调用copy_namespaces函数。

static struct task_struct *copy_process(unsigned long clone_flags,

unsigned long stack_start,

unsigned long stack_size,

int __user *child_tidptr,

struct pid *pid,

int trace)

{

int retval;

struct task_struct *p;

/*下面的代码是对clone_flag标志进行检查,有部分表示是互斥的,例如CLONE_NEWNS和CLONENEW_FS*/

if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))

return ERR_PTR(-EINVAL);

if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))

return ERR_PTR(-EINVAL);

if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))

return ERR_PTR(-EINVAL);

 

if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))

return ERR_PTR(-EINVAL);

if ((clone_flags & CLONE_PARENT) &&

current->signal->flags & SIGNAL_UNKILLABLE)

return ERR_PTR(-EINVAL);

……

retval = copy_namespaces(clone_flags, p);

if (retval)

goto bad_fork_cleanup_mm;

retval = copy_io(clone_flags, p);

if (retval)

goto bad_fork_cleanup_namespaces;

retval = copy_thread(clone_flags, stack_start, stack_size, p);

if (retval)

goto bad_fork_cleanup_io;

/*do_fork中调用copy_process函数,该函数中pid参数为NULL,所以这里的if判断是成立的。为进程所在的namespace分配pid,在3.0的内核之前还有一个关键函数,就是namespace创建后和cgroup的关系,

if (current->nsproxy != p->nsproxy) {

retval = ns_cgroup_clone(p, pid);

if (retval)

goto bad_fork_free_pid;

但在3.0内核以后给删掉了,具体请参考remove the ns_cgroup*/

if (pid != &init_struct_pid) {

retval = -ENOMEM;

pid = alloc_pid(p->nsproxy->pid_ns_for_children);

if (!pid)

goto bad_fork_cleanup_io;

}…..

}

3.3copy_namespaces 函数

在kernel/nsproxy.c文件中定义了copy_namespaces函数。

int copy_namespaces(unsigned long flags, struct task_struct *tsk)

{

struct nsproxy *old_ns = tsk->nsproxy;

struct user_namespace *user_ns = task_cred_xxx(tsk, user_ns);

struct nsproxy *new_ns;

 /*首先检查flag,如果flag标志不是下面的五种之一,就会调用get_nsproxy对old_ns递减引用计数,然后直接返回0*/

if (likely(!(flags & (CLONE_NEWNS | CLONE_NEWUTS | CLONE_NEWIPC |

CLONE_NEWPID | CLONE_NEWNET)))) {

get_nsproxy(old_ns);

return 0;

}

/*当前进程是否有超级用户的权限*/

if (!ns_capable(user_ns, CAP_SYS_ADMIN))

return -EPERM;

/*

* CLONE_NEWIPC must detach from the undolist: after switching

* to a new ipc namespace, the semaphore arrays from the old

* namespace are unreachable.In clone parlance, CLONE_SYSVSEM

* means share undolist with parent, so we must forbid using

* it along with CLONE_NEWIPC.

对CLONE_NEWIPC进行特殊的判断,*/

if ((flags & (CLONE_NEWIPC | CLONE_SYSVSEM)) ==

(CLONE_NEWIPC | CLONE_SYSVSEM))

return -EINVAL;

 /*为进程创建新的namespace*/

new_ns = create_new_namespaces(flags, tsk, user_ns, tsk->fs);

if (IS_ERR(new_ns))

returnPTR_ERR(new_ns);

tsk->nsproxy = new_ns;

return 0;

}

3.4create_new_namespaces函数

create_new_namespaces创建新的namespace

static struct nsproxy *create_new_namespaces(unsigned long flags,

struct task_struct *tsk, struct user_namespace *user_ns,

struct fs_struct *new_fs)

{

struct nsproxy *new_nsp;

int err;

/*为新的nsproxy分配内存空间,并对其引用计数设置为初始1*/

new_nsp = create_nsproxy();

if (!new_nsp)

return ERR_PTR(-ENOMEM);

/*如果Namespace中的各个标志位进行了设置,则会调用相应的namespace进行创建*/

new_nsp->mnt_ns = copy_mnt_ns(flags, tsk->nsproxy->mnt_ns, user_ns, new_fs);

if (IS_ERR(new_nsp->mnt_ns)) {

err = PTR_ERR(new_nsp->mnt_ns);

goto out_ns;

}

new_nsp->uts_ns = copy_utsname(flags, user_ns, tsk->nsproxy->uts_ns);

if (IS_ERR(new_nsp->uts_ns)) {

err = PTR_ERR(new_nsp->uts_ns);

goto out_uts;

}

 

new_nsp->ipc_ns = copy_ipcs(flags, user_ns, tsk->nsproxy->ipc_ns);

if (IS_ERR(new_nsp->ipc_ns)) {

err = PTR_ERR(new_nsp->ipc_ns);

goto out_ipc;

}

new_nsp->pid_ns_for_children =

copy_pid_ns(flags, user_ns, tsk->nsproxy->pid_ns_for_children);

if (IS_ERR(new_nsp->pid_ns_for_children)) {

err = PTR_ERR(new_nsp->pid_ns_for_children);

goto out_pid;

}

new_nsp->net_ns = copy_net_ns(flags, user_ns, tsk->nsproxy->net_ns);

if (IS_ERR(new_nsp->net_ns)) {

err = PTR_ERR(new_nsp->net_ns);

goto out_net;

}

return new_nsp;

out_net:

if (new_nsp->pid_ns_for_children)

put_pid_ns(new_nsp->pid_ns_for_children);

out_pid:

if (new_nsp->ipc_ns)

put_ipc_ns(new_nsp->ipc_ns);

out_ipc:

if (new_nsp->uts_ns)

put_uts_ns(new_nsp->uts_ns);

out_uts:

if (new_nsp->mnt_ns)

put_mnt_ns(new_nsp->mnt_ns);

out_ns:

kmem_cache_free(nsproxy_cachep, new_nsp);

return ERR_PTR(err);

}

3.4.1 create_nsproxy函数

static inline struct nsproxy *create_nsproxy(void)

{

struct nsproxy *nsproxy;

nsproxy = kmem_cache_alloc(nsproxy_cachep, GFP_KERNEL);

if (nsproxy)

atomic_set(&nsproxy->count, 1);

return nsproxy;

}

例子1:namespace pid的例子

#include <errno.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <unistd.h>

#include <sched.h>

#include <string.h>

static int fork_child(void *arg)

{

int a = (int)arg;

int i;

pid_t pid;

char *cmd= "ps -el;

printf("In the container, my pid is: %d\n", getpid());

/*ps命令是解析procfs的内容得到结果的,而procfs根目录的进程pid目录是基于mount当时的pid namespace的,这个在procfs的get_sb回调中体现的。因此只需要重新mount一下proc, mount -t proc proc /proc*/

mount("proc", "/proc", "proc", 0, "");

for (i = 0; i <a; i++) {

pid = fork();

if (pid <0)

return pid;

else if (pid)

printf("pid of my child is %d\n", pid);

else if (pid == 0) {

sleep(30);

exit(0);

}

}

execl("/bin/bash", "/bin/bash","-c",cmd, NULL);

return 0;

}

int main(int argc, char *argv[])

{

int cpid;

void *childstack, *stack;

int flags;

int ret = 0;

int stacksize = getpagesize() * 4;

if (argc != 2) {

fprintf(stderr, "Wrong usage.\n");

return -1;

}

stack = malloc(stacksize);

if(stack == NULL)

{

return -1;

}

printf("Out of the container, my pid is: %d\n", getpid());

childstack = stack + stacksize;

flags = CLONE_NEWPID | CLONE_NEWNS;

cpid = clone(fork_child, childstack, flags, (void *)atoi(argv[1]));

printf("cpid: %d\n", cpid);

if (cpid <0) {

perror("clone");

ret = -1;

goto out;

}

fprintf(stderr, "Parent sleeping 20 seconds\n");

sleep(20);

ret = 0;

out:

free(stack);

return ret;

}

}

运行结果:

root@Ubuntu:~/c_program# ./namespace 7

Out of the container, my pid is: 8684

cpid: 8685

Parent sleeping 20 seconds

In the container, my pid is: 1

pid of my child is 2

pid of my child is 3

pid of my child is 4

pid of my child is 5

pid of my child is 6

pid of my child is 7

pid of my child is 8

F SUIDPIDPPIDC PRINI ADDR SZ WCHANTTYTIME CMD

4 R0100800 -1085 -pts/000:00:00 ps

1 S0210800 -458 hrtime pts/000:00:00 namespace

1 S0310800 -458 hrtime pts/000:00:00 namespace

1 S0410800 -458 hrtime pts/000:00:00 namespace

1 S0510800 -458 hrtime pts/000:00:00 namespace

1 S0610800 -458 hrtime pts/000:00:00 namespace

1 S0710800 -458 hrtime pts/000:00:00 namespace

1 S0810800 -458 hrtime pts/000:00:00 namespace

例子2:UTS的例子

#define _GNU_SOURCE

#include <sys/wait.h>

#include <sys/utsname.h>

#include <sched.h>

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#define errExit(msg)do { perror(msg); exit(EXIT_FAILURE); \

} while (0)

static int/* Start function for cloned child */

childFunc(void *arg)

{

struct utsname uts;

/* Change hostname in UTS namespace of child */

if (sethostname(arg, strlen(arg)) == -1)

errExit("sethostname");

/* Retrieve and display hostname */

if (uname(&uts) == -1)

errExit("uname");

printf("uts.nodename in child:%s\n", uts.nodename);

/* Keep the namespace open for a while, by sleeping.

*This allows some experimentation--for example, another

*process might join the namespace. */

sleep(200);

return 0;/* Child terminates now */

}

#define STACK_SIZE (1024 * 1024)/* Stack size for cloned child */

int

main(int argc, char *argv[])

{

char *stack;/* Start of stack buffer */

char *stackTop;/* End of stack buffer */

pid_t pid;

struct utsname uts;

if (argc < 2) {

fprintf(stderr, "Usage: %s <child-hostname>\n", argv[0]);

exit(EXIT_SUCCESS);

}

/* Allocate stack for child */

stack = malloc(STACK_SIZE);

if (stack == NULL)

errExit("malloc");

stackTop = stack + STACK_SIZE;/* Assume stack grows downward */

/* Create child that has its own UTS namespace;

*child commences execution in childFunc() */

pid = clone(childFunc, stackTop, CLONE_NEWUTS | SIGCHLD, argv[1]);

if (pid == -1)

errExit("clone");

printf("clone() returned %ld\n", (long) pid);

/* Parent falls through to here */

sleep(1);/* Give child time to change its hostname */

/* Display hostname in parent's UTS namespace. This will be

*different from hostname in child's UTS namespace. */
 
if (uname(&uts) == -1)

errExit("uname");

printf("uts.nodename in parent: %s\n", uts.nodename);

if (waitpid(pid, NULL, 0) == -1)/* Wait for child */

errExit("waitpid");

printf("child has terminated\n");

exit(EXIT_SUCCESS);

}

root@ubuntu:~/c_program# ./namespace_1 test

clone() returned 4101

uts.nodename in child:test

uts.nodename in parent: ubuntu