最近一直都在看《Hadoop权威指南(中文版)》,虽然的确是在翻译的方面有很多不如意之处,但是对于我这个英语不是很好的人来说,看中文版的书还是能够大大节约我的时间的。我的本科毕业设计就是关于HDFS和MapReduce的,所以我最近非常想马上编写出自己的MapReduce程序。
从网上看到了一个关于题目所说的非常好的配置方法,自己动手试了试,发现果然非常好用,所以将这个文章转载如下:
	
	1、确定eclipse是关闭的,如果不是的话,弄好之后要关了重新打开才可以。找到hadoop的安装路径,我的是hadoop-0.20.2,在home/hadoop/hadoop-0.20.2/contrib/eclipse-plugin/下有hadoop-0.20.2-eclipse-plugin.jar,将这个jar包拷贝到eclipse安装目录下的plugins里,我的是在usr/eclipse/plugins/下,然后打开eclipse,点击主菜单上的window—preferences,在左边栏中找到Hadoop Map/Reduce,点击后在右边对话框里设置hadoop的安装路径即主目录。
	
	2、创建一个MapReduce Project,点击eclipse主菜单上的File—New—Project,在弹出的对话框中选择MapReduce Project,之后输入Project的名,例如wordcount,确定即可,然后就可以象一个普通的 Eclipse Java project 那样,添加Java类,比如你可以定义一个WordCount 类,然后将你安装的hadoop程序里的WordCount源程序代码(版本不同会有区别),我的是在hadoop-0.20.2/src/examples/org/apache/hadoop/examples/WordCount.java写到此类中(以下是源程序代码),如果是19版本以前的,添加入必要的 import 语句 ( Eclipse 快捷键 ctrl+shift+o 可以帮你),即可形成一个完整的 wordcount 程序,然后运行。
	import java.io.IOException;
	import java.util.StringTokenizer;
	import org.apache.hadoop.conf.Configuration;
	import org.apache.hadoop.fs.Path;
	import org.apache.hadoop.io.IntWritable;
	import org.apache.hadoop.io.Text;
	import org.apache.hadoop.mapreduce.Job;
	import org.apache.hadoop.mapreduce.Mapper;
	import org.apache.hadoop.mapreduce.Reducer;
	import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
	import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
	import org.apache.hadoop.util.GenericOptionsParser;
	public class WordCount {
	public static class TokenizerMapper
	extends Mapper<Object, Text, Text, IntWritable>{
	private final static IntWritable one = new IntWritable(1);
	private Text word = new Text();
	public void map(Object key, Text value, Context context
	) throws IOException, InterruptedException {
	StringTokenizer itr = new StringTokenizer(value.toString());
	while (itr.hasMoreTokens()) {
	word.set(itr.nextToken());
	context.write(word, one);
	}
	}
	}
	public static class IntSumReducer
	extends Reducer<Text,IntWritable,Text,IntWritable> {
	private IntWritable result = new IntWritable();
	public void reduce(Text key, Iterable<IntWritable> values,
	Context context
	) throws IOException, InterruptedException {
	int sum = 0;
	for (IntWritable val : values) {
	sum += val.get();
	}
	result.set(sum);
	context.write(key, result);
	}
	}
	public static void main(String[] args) throws Exception {
	Configuration conf = new Configuration();
	String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
	if (otherArgs.length != 2) {
	System.err.println("Usage: wordcount <in> <out>");
	System.exit(2);
	}
	Job job = new Job(conf, "word count");
	job.setJarByClass(WordCount.class);
	job.setMapperClass(TokenizerMapper.class);
	job.setCombinerClass(IntSumReducer.class);
	job.setReducerClass(IntSumReducer.class);
	job.setOutputKeyClass(Text.class);
	job.setOutputValueClass(IntWritable.class);
	FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
	FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
	System.exit(job.waitForCompletion(true) ? 0 : 1);
	}
	}
	
	3、运行时要设置参数,点击主菜单上的Run—Run Configurations对话框左边里选java Application点右键New,右边出现对话框中Arguments,设定程序运行时的两个参数,即输入目录和输出目录,这里的路径是相对于workspace的,不是相对于Hadoop安装路径的,我运行时写的是/home/hadoop/in /home/hadoop/out,之前我在/home/hadoop/里面创建了in文件夹(里面创建文件并写入内容,我的创建了两个文件f1和f2并写入了一些单词),out文件夹不用创建,否则运行时会出现错误,提示out文件夹已经存在,参数写了后点Run即可。
我的运行过程:
	10/11/23 17:10:55 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
	10/11/23 17:10:55 WARN mapred.JobClient: No job jar file set.  User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
	10/11/23 17:10:55 INFO input.FileInputFormat: Total input paths to process : 4
	10/11/23 17:10:55 INFO mapred.JobClient: Running job: job_local_0001
	10/11/23 17:10:55 INFO input.FileInputFormat: Total input paths to process : 4
	10/11/23 17:10:55 INFO mapred.MapTask: io.sort.mb = 100
	10/11/23 17:10:55 INFO mapred.MapTask: data buffer = 79691776/99614720
	10/11/23 17:10:55 INFO mapred.MapTask: record buffer = 262144/327680
	10/11/23 17:10:55 INFO mapred.MapTask: Starting flush of map output
	10/11/23 17:10:55 INFO mapred.TaskRunner: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting
	10/11/23 17:10:55 INFO mapred.LocalJobRunner:
	10/11/23 17:10:55 INFO mapred.TaskRunner: Task 'attempt_local_0001_m_000000_0' done.
	10/11/23 17:10:55 INFO mapred.MapTask: io.sort.mb = 100
	10/11/23 17:10:56 INFO mapred.MapTask: data buffer = 79691776/99614720
	10/11/23 17:10:56 INFO mapred.MapTask: record buffer = 262144/327680
	10/11/23 17:10:56 INFO mapred.MapTask: Starting flush of map output
	10/11/23 17:10:56 INFO mapred.TaskRunner: Task:attempt_local_0001_m_000001_0 is done. And is in the process of commiting
	10/11/23 17:10:56 INFO mapred.LocalJobRunner:
	10/11/23 17:10:56 INFO mapred.TaskRunner: Task 'attempt_local_0001_m_000001_0' done.
	10/11/23 17:10:56 INFO mapred.MapTask: io.sort.mb = 100
	10/11/23 17:10:56 INFO mapred.MapTask: data buffer = 79691776/99614720
	10/11/23 17:10:56 INFO mapred.MapTask: record buffer = 262144/327680
	10/11/23 17:10:56 INFO mapred.MapTask: Starting flush of map output
	10/11/23 17:10:56 INFO mapred.MapTask: Finished spill 0
	10/11/23 17:10:56 INFO mapred.TaskRunner: Task:attempt_local_0001_m_000002_0 is done. And is in the process of commiting
	10/11/23 17:10:56 INFO mapred.LocalJobRunner:
	10/11/23 17:10:56 INFO mapred.TaskRunner: Task 'attempt_local_0001_m_000002_0' done.
	10/11/23 17:10:56 INFO mapred.MapTask: io.sort.mb = 100
	10/11/23 17:10:56 INFO mapred.MapTask: data buffer = 79691776/99614720
	10/11/23 17:10:56 INFO mapred.MapTask: record buffer = 262144/327680
	10/11/23 17:10:56 INFO mapred.MapTask: Starting flush of map output
	10/11/23 17:10:56 INFO mapred.JobClient:  map 100% reduce 0%
	10/11/23 17:10:56 INFO mapred.MapTask: Finished spill 0
	10/11/23 17:10:56 INFO mapred.TaskRunner: Task:attempt_local_0001_m_000003_0 is done. And is in the process of commiting
	10/11/23 17:10:56 INFO mapred.LocalJobRunner:
	10/11/23 17:10:56 INFO mapred.TaskRunner: Task 'attempt_local_0001_m_000003_0' done.
	10/11/23 17:10:56 INFO mapred.LocalJobRunner:
	10/11/23 17:10:56 INFO mapred.Merger: Merging 4 sorted segments
	10/11/23 17:10:56 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 135 bytes
	10/11/23 17:10:56 INFO mapred.LocalJobRunner:
	10/11/23 17:10:56 INFO mapred.TaskRunner: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting
	10/11/23 17:10:56 INFO mapred.LocalJobRunner:
	10/11/23 17:10:56 INFO mapred.TaskRunner: Task attempt_local_0001_r_000000_0 is allowed to commit now
	10/11/23 17:10:56 INFO output.FileOutputCommitter: Saved output of task 'attempt_local_0001_r_000000_0' to /home/hadoop/out
	10/11/23 17:10:56 INFO mapred.LocalJobRunner: reduce > reduce
	10/11/23 17:10:56 INFO mapred.TaskRunner: Task 'attempt_local_0001_r_000000_0' done.
	10/11/23 17:10:57 INFO mapred.JobClient:  map 100% reduce 100%
	10/11/23 17:10:57 INFO mapred.JobClient: Job complete: job_local_0001
	10/11/23 17:10:57 INFO mapred.JobClient: Counters: 12
	10/11/23 17:10:57 INFO mapred.JobClient:   FileSystemCounters
	10/11/23 17:10:57 INFO mapred.JobClient:     FILE_BYTES_READ=66060
	10/11/23 17:10:57 INFO mapred.JobClient:     FILE_BYTES_WRITTEN=136124
	10/11/23 17:10:57 INFO mapred.JobClient:   Map-Reduce Framework
	10/11/23 17:10:57 INFO mapred.JobClient:     Reduce input groups=9
	10/11/23 17:10:57 INFO mapred.JobClient:     Combine output records=12
	10/11/23 17:10:57 INFO mapred.JobClient:     Map input records=2
	10/11/23 17:10:57 INFO mapred.JobClient:     Reduce shuffle bytes=0
	10/11/23 17:10:57 INFO mapred.JobClient:     Reduce output records=9
	10/11/23 17:10:57 INFO mapred.JobClient:     Spilled Records=24
	10/11/23 17:10:57 INFO mapred.JobClient:     Map output bytes=107
	10/11/23 17:10:57 INFO mapred.JobClient:     Combine input records=12
	10/11/23 17:10:57 INFO mapred.JobClient:     Map output records=12
	10/11/23 17:10:57 INFO mapred.JobClient:     Reduce input records=12
	运行结果:查看运行时设置的输出目录/home/hadoop/out,即为运行结果
	come    1
	fly    2
	follow    1
	heart    1
	hello    2
	moto    1
	my    1
	on    1
	tree    2
真的很神奇,原来我苦苦寻找编写MapReduce程序的办法竟然如此简单,我一直都在网上找各种方法,以为要下载什么Eclipse的插件等等,原来Hadoop-0.20.2里就自带了这个插件,而Eclipse竟然也原生的支持MapReduce程序的开发,看来开源的力量真的很伟大啊!

