红联Linux门户
Linux帮助

Linux下的原子操作

发布时间:2016-03-08 22:40:21来源:linux网站作者:尘埃2

linux支持的哪些操作是具有原子特性的?知道这些东西是理解和设计无锁化编程算法的基础。

__sync_fetch_and_add系列的命令,发现这个系列命令讲的最好的一篇文章,英文好的同学可以直接去看原文。Multithreaded simple data type access and atomic variables
__sync_fetch_and_add系列一共有十二个函数,有加/减/与/或/异或/等函数的原子性操作函数,__sync_fetch_and_add,顾名思义,先fetch,然后自加,返回的是自加以前的值。以count = 4为例,调用__sync_fetch_and_add(&count,1),之后,返回值是4,然后,count变成了5.
有__sync_fetch_and_add,自然也就有__sync_add_and_fetch,呵呵这个的意思就很清楚了,先自加,在返回。他们哥俩的关系与i++和++i的关系是一样的。被谭浩强他老人家收过保护费的都会清楚了。
有了这个宝贝函数,我们就有新的解决办法了。对于多线程对全局变量进行自加,我们就再也不用理线程锁了。下面这行代码,和上面被pthread_mutex保护的那行代码作用是一样的,而且也是线程安全的。
__sync_fetch_and_add( &global_int, 1 );
下面是这群函数的全家福,大家看名字就知道是这些函数是干啥的了。
在用gcc编译的时候要加上选项 -march=i686
// sam:在我的服务器上,发现不加都可以。


type __sync_fetch_and_add (type *ptr, type value);
type __sync_fetch_and_sub (type *ptr, type value);
type __sync_fetch_and_or (type *ptr, type value);
type __sync_fetch_and_and (type *ptr, type value);
type __sync_fetch_and_xor (type *ptr, type value);
type __sync_fetch_and_nand (type *ptr, type value);
type __sync_add_and_fetch (type *ptr, type value);
type __sync_sub_and_fetch (type *ptr, type value);
type __sync_or_and_fetch (type *ptr, type value);
type __sync_and_and_fetch (type *ptr, type value);
type __sync_xor_and_fetch (type *ptr, type value);
type __sync_nand_and_fetch (type *ptr, type value);


// sam:很纳闷为什么后边要写省略号,是不是还有不需要我们关心的参数?用的时候不需要传参数?下面这两个函数正是哥想要的啦,可以轻松实现互斥锁的功能。
bool __sync_bool_compare_and_swap (type*ptr, type oldval, type newval, ...)
type __sync_val_compare_and_swap (type *ptr, type oldval, type newval, ...)
这两个函数提供原子的比较和交换,如果*ptr == oldval,就将newval写入*ptr,
第一个函数在相等并写入的情况下返回true.
第二个函数在返回操作之前的值。

__sync_synchronize (...)


还有两个函数:
type __sync_lock_test_and_set (type *ptr, type value, ...)
将*ptr设为value并返回*ptr操作之前的值。

void __sync_lock_release (type *ptr, ...)
将*ptr置0

__sync_synchronize (...)


发出一个full barrier.

关于memory barrier,cpu会对我们的指令进行排序,一般说来会提高程序的效率,但有时候可能造成我们不希望得到的结果,举一个例子,比如我们有一个硬件设备,它有4个寄存器,当你发出一个操作指令的时候,一个寄存器存的是你的操作指令(比如READ),两个寄存器存的是参数(比如是地址和size),最后一个寄存器是控制寄存器,在所有的参数都设置好之后向其发出指令,设备开始读取参数,执行命令,程序可能如下:
write1(dev.register_size,size);
write1(dev.register_addr,addr);
write1(dev.register_cmd,READ);
write1(dev.register_control,GO);


如果最后一条write1被换到了前几条语句之前,那么肯定不是我们所期望的,这时候我们可以在最后一条语句之前加入一个memory barrier,强制cpu执行完前面的写入以后再执行最后一条:

write1(dev.register_size,size);
write1(dev.register_addr,addr);
write1(dev.register_cmd,READ);
__sync_synchronize();
write1(dev.register_control,GO);


memory barrier有几种类型:
acquire barrier : 不允许将barrier之后的内存读取指令移到barrier之前(linux kernel中的wmb())。
release barrier : 不允许将barrier之前的内存读取指令移到barrier之后 (linux kernel中的rmb())。
full barrier    : 以上两种barrier的合集(linux kernel中的mb())。


还有两个函数:

type __sync_lock_test_and_set (type *ptr, type value, ...)
将*ptr设为value并返回*ptr操作之前的值。

void __sync_lock_release (type *ptr, ...)
将*ptr置0


示例程序:

#include <stdio.h>
#include <pthread.h>
#include <stdlib.h>

static int count = 0;
void *test_func(void *arg)
{
int i=0;
for(i=0;i<20000;++i){
__sync_fetch_and_add(&count,1);
}
return NULL;
}

int main(int argc, const char *argv[])
{
pthread_t id[20];
int i = 0;

for(i=0;i<20;++i){
pthread_create(&id[i],NULL,test_func,NULL);
}

for(i=0;i<20;++i){
pthread_join(id[i],NULL);
}

printf("%d\n",count);
return 0;
}


本文永久更新地址:http://www.linuxdiyf.com/linux/18736.html